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Background and Introduction

• What is the Generalized Traveling Salesman 

Problem (GTSP)?

– Variation of the well-known traveling salesman 

problem.problem.

– A set of nodes to be visited is partitioned into 

clusters.

– Objective:  Find a minimum-cost tour visiting 

exactly one node in each cluster.

– Example on the following slides…
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GTSP Example

• Start with a set of nodes or locations to visit.
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GTSP Example (continued)

• Partition the nodes into clusters.
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GTSP Example (continued)

• Find the minimum tour visiting each cluster.
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Applications

• The GTSP has many real-world applications in 

the field of routing:

– Mailbox collection and stochastic vehicle routing.

– Warehouse order picking with multiple stock – Warehouse order picking with multiple stock 

locations.

– Airport selection and routing for courier planes.
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Mathematical Formulation

• The GTSP can be formulated as an Integer Linear Program (ILP).

• Graph: G(V, E), where V is a set of vertices partitioned into m clusters {V1, V2, … 
Vm } and E is a set of edges connecting the vertices. 

• Distance Matrix: C is a distance matrix defined on E, where ce is the weight of 
edge e.

• Decision Variables: xe and yv are 0-1 decision variables representing the solution 
edges and vertices respectively.

7

Exact Algorithms  >



Algorithms for the GTSP

• Like the TSP, the GTSP is NP-hard.

• There exist exact algorithms that rely on smart 
enumeration techniques:

– Brand-and-cut (B&C) algorithm (M. Fischetti, – Brand-and-cut (B&C) algorithm (M. Fischetti, 
1997)

– Provided exact solutions to reasonably sized GTSP 
problems (48 ≤ n ≤ 442 and 10 ≤ m ≤ 89 ).

– For problems with larger than 90 clusters the run 
time of the B&C algorithm began approaching one 
day.
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Algorithms for the GTSP (continued)

• Heuristic approaches to the GTSP:

– Generalized Nearest Neighbor Heuristic (C.E. 

Noon, 1988)

– Random-key Genetic Algorithm (L. Snyder and M. – Random-key Genetic Algorithm (L. Snyder and M. 

Daskin, 2006)

– mrOX Genetic Algorithm (J. Silberholz and B.L. 

Golden, 2007)*
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Overview of Genetic Algorithms (GA)

• Proposed in the 1970’s by Holland.

• Stochastic search technique commonly used 

to find approximate solutions to combinatorial 

optimization problems.optimization problems.

• Inspired by the process of natural selection 

and the theory of evolutionary biology.

• Simulate the evolution of a population of 

solutions.
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Overview of GAs (continued)

• Components of Genetic Algorithms:

• Selection Operator:
– Select the best solutions (chromosomes) for breeding.

• Crossover Operator:
– Combine the pairs of selected solutions in some way to – Combine the pairs of selected solutions in some way to 

produce new solutions.

• Mutation Operator:
– Randomly modify some solutions to preserve population 

diversity.

• Termination Criteria:
– Terminate after a number of iterations (or period of time).

– Terminate after a better solution is not found within a 
number of generations
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Overview of mrOX Genetic Algorithm

• First, what is mrOX?

• The mrOX is the crossover operator at the heart 

of the mrOX GA.

• Proposed by J. Silberholz and B.L. Golden (2007).• Proposed by J. Silberholz and B.L. Golden (2007).

• Modified rotational ordered crossover operator.

• Modification of the TSP ordered crossover (OX) 

proposed by (Davis, 1985).

• Results in a more “intelligent” crossover than the 

OX.
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Example of the GTSP OX

P1 [ 12, 35, 23, 48 ]

P1’ [ 12 | 35, 23 | 48 ] [ - | 35, 23 | - ] [ - | 35, 23 | 11 ] [ 47 | 35, 23 | 11 ]

Start building child 

chromosome with P1 sub-path

• Chromosomes are represented by path-lists.

Final OX 

chromosome
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P2 [ 24, 35, 47, 11 ]

P2’ [ 24 | 35, 47 | 11 ]

P1’ [ 12 | 35, 23 | 48 ] [ - | 35, 23 | - ] [ - | 35, 23 | 11 ]

{  - } {  1  } {  1, 4  }

[ 47 | 35, 23 | 11 ]

12 = (cluster)(node)

Inserted sub-path

from P2Randomly generate

cut-points

m+r+OX >

Add genetic material 

from P2



mrOX

• Modify the inserted sub-path resulting from the OX 
operator and find the best one.

• rOX – rotational + OX:
– Creates rotations and reversals of the inserted sub-path.

– Example sub-tour: {1, 2, 3}
• Rotations: { {1, 2, 3}  {2, 3, 1}  {3, 1, 2} }• Rotations: { {1, 2, 3}  {2, 3, 1}  {3, 1, 2} }

• Reversals: { {3, 2, 1}  {1, 3, 2}  {2, 1, 3} }

• mrOX – modified + rOX:
– For each set of sub-paths generated in rOX create combinations 

of each node in the clusters at the end-points.

– { 1{A, B} , 3, 2{D, E} }:
• {1A , 3, 2D }  {1A , 3, 2E }  {1B , 3, 2D }  {1B , 3, 2E }
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The Serial mrOX GA

• The mrOX GA starts by first isolating a number of 
sub-populations for a several generations.

• Breeds new solutions using the mrOX crossover 
operator.

Applies tour improvement heuristics like 2-opt • Applies tour improvement heuristics like 2-opt 
and 1-swap on improved child solutions.

• Preserves diversity with a 5% chance of mutation.

• Terminates after the algorithm does not produce 
a better result in 150 generations.
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Why Parallelize?

• Speedup
– Provide higher quality solutions in less time.

• Increased Problem Size
– Utilize more resources to attack larger problem instances.

• Robustness
– Many serial heuristics require multiple input parameters that – Many serial heuristics require multiple input parameters that 

need to be tuned experimentally.

– Each process can use a different set of parameters to avoid 
manual tuning.

– Perform consistently on a range of problem instances.

• Cooperation
– Use cooperative mechanisms to guide the search to more 

promising regions of the search space.
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Cooperation Schemes

• No Cooperation
– Provides a useful benchmark for testing other cooperation 

schemes.

• Solution Warehouse*
– Workers periodically send solution updates to a central 

repository.repository.

– The repository synchronizes the workers to a  set of the 
best solutions found so far.

• Inter-Worker Communication
– Cooperation is structured on a specific topology.

– Worker processes may only cooperate with their 
neighbors.

– Example: Ring Topology
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Classification of Parallel Meta-heuristics 

• Three classifications from Crainic and Toulouse 
(2003)

• Type 1: Low-Level Parallelism
– Attempts to speed up processing within an iteration of 

a heuristic method.a heuristic method.

• Type 2: Partitioning of Solution Space
– Partitions the solution space into subsets to explore in 

parallel.

• Type 3: Concurrent Exploration*
– Multiple concurrent explorations of the solution 

space.
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Parallel Approach to the GTSP

• Run multiple instances of the mrOX GA in 

parallel.

• The proposed architecture supports a type 3 

classification: multiple concurrent classification: multiple concurrent 

explorations of the solution space.

• Implement the solution warehouse method of 

cooperation to guide worker processes to 

more promising regions of the search space.
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Method of Approach

1. Develop a general parallel architecture for 

hosting sequential heuristic algorithms.*

2. Extend the framework provided by the 

architecture to host the mrOX GA and the architecture to host the mrOX GA and the 

GTSP problem class.

3. Implement the solution warehouse method 

of cooperation.
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Implementation

• Initial Development and Validation:

– Multi-processor PC running Linux O/S.

• Final Validation and Testing:

– UMD’s Deepthought Cluster, Linux O/S, up to 64 – UMD’s Deepthought Cluster, Linux O/S, up to 64 
nodes with at least 2 processors.

• Language and Libraries:

– C/C++

– Message Passing Interface (MPI) Libraries

– POSIX Threads Library
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Database

• Based on a subset of TSP instances from the well-
known TSPLib – a library of TSP instances.

• Use existing code for partitioning the nodes into 
clusters using method in (M. Fischetti, 1997).

• Use a set of larger instances tested in (Silberholz and • Use a set of larger instances tested in (Silberholz and 
Golden, 2007).

– Number of nodes between 400 and 1084.

– Number of clusters between 80 and 200.

– The serial mrOX is already fast on small problem instances.

– Don’t have optimal results for larger instances but there 
are published results for tests of the mrOX GA and S&D GA 
on these instances.
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Validation

1. Validate the parallel architecture by 

implementing a simple test algorithm with 

several test-cases.

2. Validate the parallel implementation of the 2. Validate the parallel implementation of the 

mrOX GA using a single worker process.

3. Validate the parallel implementation of the 

mrOX GA using more than one worker 

process.
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Testing

• Test how the parallel implementation scales with 
the number of processors.

• Use results (i.e. solution costs) from runs of the 
serial mrOX GA as a stopping criterion for the 
parallel implementation.parallel implementation.

• Measure the run times while using different 
numbers of processors.

• Test the efficacy of the cooperation scheme using 
the no-cooperation scheme as a benchmark.

• Time permitting, try a different cooperation 
scheme.
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