
A Parallel Architecture for the

Generalized Traveling Salesman Problem

Max Scharrenbroich

AMSC 663 Project Proposal

Advisor: Dr. Bruce L. Golden

R. H. Smith School of Business

1

Background and Introduction

• What is the Generalized Traveling Salesman

Problem (GTSP)?

– Variation of the well-known traveling salesman

problem.problem.

– A set of nodes to be visited is partitioned into

clusters.

– Objective: Find a minimum-cost tour visiting

exactly one node in each cluster.

– Example on the following slides…

2

GTSP Example

• Start with a set of nodes or locations to visit.

3

GTSP Example (continued)

• Partition the nodes into clusters.

2

1

3

4

5

6

4

GTSP Example (continued)

• Find the minimum tour visiting each cluster.

2

1

3

4

5

6

5

Applications >

Applications

• The GTSP has many real-world applications in

the field of routing:

– Mailbox collection and stochastic vehicle routing.

– Warehouse order picking with multiple stock – Warehouse order picking with multiple stock

locations.

– Airport selection and routing for courier planes.

6

Mathematical Formulation >

Mathematical Formulation

• The GTSP can be formulated as an Integer Linear Program (ILP).

• Graph: G(V, E), where V is a set of vertices partitioned into m clusters {V1, V2, …
Vm } and E is a set of edges connecting the vertices.

• Distance Matrix: C is a distance matrix defined on E, where ce is the weight of
edge e.

• Decision Variables: xe and yv are 0-1 decision variables representing the solution
edges and vertices respectively.

7

Exact Algorithms >

Algorithms for the GTSP

• Like the TSP, the GTSP is NP-hard.

• There exist exact algorithms that rely on smart
enumeration techniques:

– Brand-and-cut (B&C) algorithm (M. Fischetti, – Brand-and-cut (B&C) algorithm (M. Fischetti,
1997)

– Provided exact solutions to reasonably sized GTSP
problems (48 ≤ n ≤ 442 and 10 ≤ m ≤ 89).

– For problems with larger than 90 clusters the run
time of the B&C algorithm began approaching one
day.

8

Heuristic Algorithms >

Algorithms for the GTSP (continued)

• Heuristic approaches to the GTSP:

– Generalized Nearest Neighbor Heuristic (C.E.

Noon, 1988)

– Random-key Genetic Algorithm (L. Snyder and M. – Random-key Genetic Algorithm (L. Snyder and M.

Daskin, 2006)

– mrOX Genetic Algorithm (J. Silberholz and B.L.

Golden, 2007)*

9

Overview of GAs >

Overview of Genetic Algorithms (GA)

• Proposed in the 1970’s by Holland.

• Stochastic search technique commonly used

to find approximate solutions to combinatorial

optimization problems.optimization problems.

• Inspired by the process of natural selection

and the theory of evolutionary biology.

• Simulate the evolution of a population of

solutions.

10

Components of a GA >

Overview of GAs (continued)

• Components of Genetic Algorithms:

• Selection Operator:
– Select the best solutions (chromosomes) for breeding.

• Crossover Operator:
– Combine the pairs of selected solutions in some way to – Combine the pairs of selected solutions in some way to

produce new solutions.

• Mutation Operator:
– Randomly modify some solutions to preserve population

diversity.

• Termination Criteria:
– Terminate after a number of iterations (or period of time).

– Terminate after a better solution is not found within a
number of generations

11

mrOX GAs >

Overview of mrOX Genetic Algorithm

• First, what is mrOX?

• The mrOX is the crossover operator at the heart

of the mrOX GA.

• Proposed by J. Silberholz and B.L. Golden (2007).• Proposed by J. Silberholz and B.L. Golden (2007).

• Modified rotational ordered crossover operator.

• Modification of the TSP ordered crossover (OX)

proposed by (Davis, 1985).

• Results in a more “intelligent” crossover than the

OX.

12

Example of OX >

Example of the GTSP OX

P1 [12, 35, 23, 48]

P1’ [12 | 35, 23 | 48] [- | 35, 23 | -] [- | 35, 23 | 11] [47 | 35, 23 | 11]

Start building child

chromosome with P1 sub-path

• Chromosomes are represented by path-lists.

Final OX

chromosome

13

P2 [24, 35, 47, 11]

P2’ [24 | 35, 47 | 11]

P1’ [12 | 35, 23 | 48] [- | 35, 23 | -] [- | 35, 23 | 11]

{ - } { 1 } { 1, 4 }

[47 | 35, 23 | 11]

12 = (cluster)(node)

Inserted sub-path

from P2Randomly generate

cut-points

m+r+OX >

Add genetic material

from P2

mrOX

• Modify the inserted sub-path resulting from the OX
operator and find the best one.

• rOX – rotational + OX:
– Creates rotations and reversals of the inserted sub-path.

– Example sub-tour: {1, 2, 3}
• Rotations: { {1, 2, 3} {2, 3, 1} {3, 1, 2} }• Rotations: { {1, 2, 3} {2, 3, 1} {3, 1, 2} }

• Reversals: { {3, 2, 1} {1, 3, 2} {2, 1, 3} }

• mrOX – modified + rOX:
– For each set of sub-paths generated in rOX create combinations

of each node in the clusters at the end-points.

– { 1{A, B} , 3, 2{D, E} }:
• {1A , 3, 2D } {1A , 3, 2E } {1B , 3, 2D } {1B , 3, 2E }

14

The Algorithm >

The Serial mrOX GA

• The mrOX GA starts by first isolating a number of
sub-populations for a several generations.

• Breeds new solutions using the mrOX crossover
operator.

Applies tour improvement heuristics like 2-opt • Applies tour improvement heuristics like 2-opt
and 1-swap on improved child solutions.

• Preserves diversity with a 5% chance of mutation.

• Terminates after the algorithm does not produce
a better result in 150 generations.

15

Why Parallelize? >

Why Parallelize?

• Speedup
– Provide higher quality solutions in less time.

• Increased Problem Size
– Utilize more resources to attack larger problem instances.

• Robustness
– Many serial heuristics require multiple input parameters that – Many serial heuristics require multiple input parameters that

need to be tuned experimentally.

– Each process can use a different set of parameters to avoid
manual tuning.

– Perform consistently on a range of problem instances.

• Cooperation
– Use cooperative mechanisms to guide the search to more

promising regions of the search space.

16

Cooperation Schemes >

Cooperation Schemes

• No Cooperation
– Provides a useful benchmark for testing other cooperation

schemes.

• Solution Warehouse*
– Workers periodically send solution updates to a central

repository.repository.

– The repository synchronizes the workers to a set of the
best solutions found so far.

• Inter-Worker Communication
– Cooperation is structured on a specific topology.

– Worker processes may only cooperate with their
neighbors.

– Example: Ring Topology

17

Classification >

Classification of Parallel Meta-heuristics

• Three classifications from Crainic and Toulouse
(2003)

• Type 1: Low-Level Parallelism
– Attempts to speed up processing within an iteration of

a heuristic method.a heuristic method.

• Type 2: Partitioning of Solution Space
– Partitions the solution space into subsets to explore in

parallel.

• Type 3: Concurrent Exploration*
– Multiple concurrent explorations of the solution

space.

18

Parallel Approach to GTSP >

Parallel Approach to the GTSP

• Run multiple instances of the mrOX GA in

parallel.

• The proposed architecture supports a type 3

classification: multiple concurrent classification: multiple concurrent

explorations of the solution space.

• Implement the solution warehouse method of

cooperation to guide worker processes to

more promising regions of the search space.

19

Method of Approach >

Method of Approach

1. Develop a general parallel architecture for

hosting sequential heuristic algorithms.*

2. Extend the framework provided by the

architecture to host the mrOX GA and the architecture to host the mrOX GA and the

GTSP problem class.

3. Implement the solution warehouse method

of cooperation.

20

Implementation >

Implementation

• Initial Development and Validation:

– Multi-processor PC running Linux O/S.

• Final Validation and Testing:

– UMD’s Deepthought Cluster, Linux O/S, up to 64 – UMD’s Deepthought Cluster, Linux O/S, up to 64
nodes with at least 2 processors.

• Language and Libraries:

– C/C++

– Message Passing Interface (MPI) Libraries

– POSIX Threads Library

21

Database >

Database

• Based on a subset of TSP instances from the well-
known TSPLib – a library of TSP instances.

• Use existing code for partitioning the nodes into
clusters using method in (M. Fischetti, 1997).

• Use a set of larger instances tested in (Silberholz and • Use a set of larger instances tested in (Silberholz and
Golden, 2007).

– Number of nodes between 400 and 1084.

– Number of clusters between 80 and 200.

– The serial mrOX is already fast on small problem instances.

– Don’t have optimal results for larger instances but there
are published results for tests of the mrOX GA and S&D GA
on these instances.

22

Validation >

Validation

1. Validate the parallel architecture by

implementing a simple test algorithm with

several test-cases.

2. Validate the parallel implementation of the 2. Validate the parallel implementation of the

mrOX GA using a single worker process.

3. Validate the parallel implementation of the

mrOX GA using more than one worker

process.

23

Testing >

Testing

• Test how the parallel implementation scales with
the number of processors.

• Use results (i.e. solution costs) from runs of the
serial mrOX GA as a stopping criterion for the
parallel implementation.parallel implementation.

• Measure the run times while using different
numbers of processors.

• Test the efficacy of the cooperation scheme using
the no-cooperation scheme as a benchmark.

• Time permitting, try a different cooperation
scheme.

24

References >

References
• Crainic, T.G. and Toulouse, M. Parallel Strategies for Meta-Heuristics. Fleet Management and

Logistics, 205-251.

• L. Davis. Applying Adaptive Algorithms to Epistatic Domains. Proceeding of the International

Joint Conference on Artificial Intelligence, 162-164, 1985.

• M. Fischetti, J.J. Salazar-Gonzalez, P. Toth. A branch-and-cut algorithm for the symmetric

generalized traveling salesman problem. Operations Research 45 (3): 378–394, 1997.

• G. Laporte, A. Asef-Vaziri, C. Sriskandarajah. Some Applications of the Generalized Traveling

Salesman Problem. Journal of the Operational Research Society 47: 1461-1467, 1996.

• C.E. Noon. The generalized traveling salesman problem. Ph. D. Dissertation, University of • C.E. Noon. The generalized traveling salesman problem. Ph. D. Dissertation, University of

Michigan, 1988.

• C.E. Noon. A Lagrangian based approach for the asymmetric generalized traveling salesman

problem. Operations Research 39 (4): 623-632, 1990.

• J.P. Saksena. Mathematical model of scheduling clients through welfare agencies. CORS

Journal 8: 185-200, 1970.

• J. Silberholz and B.L. Golden. The Generalized Traveling Salesman Problem: A New Genetic

Algorithm Approach. Operations Research/Computer Science Interfaces Series 37: 165-181,

2007.

• L. Snyder and M. Daskin. A random-key genetic algorithm for the generalized traveling

salesman problem. European Journal of Operational Research 17 (1): 38-53, 2006.

25

